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ABSTRACT 

Developing students’ adequate functional reasoning requires paying attention to 

the design and planning of teaching from the first educational levels. This implies 

considering and progressively articulating the diversity of meanings of the 

function, attending to the generality and formalization levels that emerged in its 

historical evolution. In this paper, we review historical and epistemological 

studies on function using theoretical tools of the Onto- semiotic Approach to 

characterize different levels of functional reasoning. We interpret meaning in 

terms of systems operative and discursive practices related to solving types of 

problems. In line with previous research, we identify partial meanings of 

function (operative-tabular, operative-graphic, algebraic-geometric, analytic, 

arbitrary correspondence between numerical sets, and mapping between 

arbitrary sets) that should be part of the overall reference meaning in the planning 

and management of function teaching and learning processes. This study provides 

a complementary view of the multiple 
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investigations that describe the phylogenesis of the concept of function in 

mathematics with a historical and epistemological approach. 

Keywords: epistemology; history; function; mathematics education; onto-se- 

miotic approach. 

 

RESUMEN 

Desarrollar un adecuado razonamiento funcional en los estudiantes requiere 

prestar atención al diseño y planificación de la enseñanza de las funciones desde 

los primeros niveles educativos. Esto supone considerar la diversidad de 

significados de la función y articularlos de manera progresiva, atendiendo a 

los niveles de generalidad y formalización emergentes en las etapas de su 

evolución histórica. En este trabajo revisamos estudios históricos y 

epistemológicos sobre la función utilizando herramientas teóricas del Enfoque 

Ontosemiótico para caracterizar distintos niveles de razonamiento funcional. En 

particular, aplicamos la interpretación del significado en términos de sistemas 

de prácticas operativas y discursivas relativas a la resolución de tipos de 

problemas. De acuerdo con investigaciones previas, identificamos significados 

parciales de la función (operatorio-tabular, operatorio-gráfico, algebraico-

geométrico, analítico, correspondencia arbitraria entre conjuntos numéricos y 

conjuntista) que pueden ser considerados como parte del significado de 

referencia global en la planificación y gestión de los procesos de enseñanza y 

aprendizaje de las funciones. Este estudio aporta una visión complementaria de 

las múltiples investigaciones que describen la filogénesis del concepto de función 

en matemáticas con un enfoque histórico y epistemológico. 

Palabras clave: epistemología; historia; función; educación matemática; en- 

foque ontosemiótico. 

 

 

RESUMO 

O desenvolvimento de um raciocínio funcional adequado nos alunos requer 

atenção à conceção e planificação do ensino das funções desde os primeiros 

níveis de ensino. Isto implica considerar a diversidade de significados de função 

e articulá-los de forma progressiva, atendendo aos níveis de generalidade e 

formalização emergentes nas etapas da sua evolução histórica. Neste artigo, 

fazemos uma revisão dos estudos históricos e epistemológicos 
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sobre função, utilizando ferramentas teóricas da Abordagem Ontossemiótica para 

caraterizar diferentes níveis de raciocínio funcional. Em particular, aplicamos a 

interpretação do significado em termos de sistemas de práticas operacionais e 

discursivas relacionadas com a resolução de tipos de problemas. Na linha de 

investigações anteriores, identificamos significados parciais de função 

(operatório-tabular, operatório-gráfico, algébrico- geométrico, analítico, 

correspondência arbitrária entre conjuntos numéricos e conjuntista) que podem 

ser considerados como parte do significado global de referência na planificação 

e gestão dos processos de ensino e aprendizagem de funções. Este estudo 

fornece uma visão complementar das múltiplas investigações que descrevem a 

filogénese do conceito de função em matemática com uma abordagem histórica 

e epistemológica. 

Palavras-chave: epistemologia; história; função; educação matemática; abor- 

dagem ontosemiótica; educação matemática. 

 

INTRODUCTION 

The concept of function is fundamental not only in analysis, but also in 

the other mathematical areas. 

Functions are all around in mathematics and its applications, albeit labelled in 

various ways: mapping, transformation, permutation, operation, process, func- 

tional, operator, sequence, morphism, functor, automaton, machine, which are 

used according to needs and opportunities: 

Function is preferred if the set of values is numerical, mappings and transfor- 

mations come from geometry but serve as well, with certain attributes added in 

algebraic structures such as morphisms, prefixed with certain prepositions or 

adjectives, functors, acting on morphisms; permutation is the term for a one-to- 

one mapping on itself, in particular, if studied in a group theory context; opera- 

tion or process is the term used with certain simple standard functions (addition, 

root extraction). [1] (p. 496) 

 

Several historical and epistemological research works [2-7] clarified the 

nature and emergence of functions. Other mathematics education studies tried to 

describe and explain students' difficulties in understanding the concept of 

function [8-12], analyze curricular orientations [13], and teacher training [14]. 

Educational research linking historical-epistemological aspects with psycho- 
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logical and instructional issues is scarcer. This research emphasized the dif- ferent 

definitions that have characterized the historical development of the concept of 

function or the students' difficulties understanding these defini- tions. In other 

words, a conceptualist view of mathematics has predominated, forgetting the 

mathematical problems and practices that motivate the emer- gence and evolution 

of functional reasoning. This approach has also relegated the characterization of 

levels of its development from a historical-cultural per- spective. 

[1] unveils an overwhelming phenomenological variety of the meaning 

of functions in mathematics and draws attention to the need to inquire into the 

use, the "what for" of functions: 

Is function a name I can attach to all that fulfills certain requirements or rather 

a signal how to act in certain contexts? Does one call a thing a function in order 

to do something with it, and if so, what? [1] (p. 511) 

In this paper, we apply the assumptions and theoretical tools of the Onto- 

semiotic Approach to Mathematical Knowledge and Instruction (OSA) [15- 

17] to analyze the emergence of the concept of function and to characterize 

the various partial meanings attributed to it. The pragmatist view of meanings and 

broadening the mathematical concept understood as definition towards its view 

as onto-semiotic configuration help to understand the complexity of 

mathematical knowledge, to explain learning difficulties, and to support in- 

structional decisions. Likewise, the algebraization levels of mathematical ac- 

tivity elaborated within the OSA framework [18] can help identify levels of 

functional reasoning associated with the evolution stages of the concept. 

What is done with functions and what are they for are central questions 

in reconstructing the function meanings proposed from the OSA since prob- lem 

situations are the raison d'être, the reason for mathematical activity [19]. 

However, the operative and discursive practices carried out to solve problems of 

identification of dependencies between variables (covariation, correspond- ence), 

analysis, and prediction of behaviors involve various types of objects (linguistic, 

concepts, propositions, procedures, arguments) and processes (representation, 

translation, definition, enunciation, syntactic and analytical calculation) that must 

be considered. 

We include in the construct of functional reasoning this broad view of 

mathematical activity, its motivation, and the use of the objects and processes 

involved. Our historical-cultural (epistemological) approach leads us to use 

the expression functional reasoning instead of functional thinking, usually re- 

ferring to the subject's cognitive abilities and processes. 
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To follow, we describe the research problem, theoretical framework, and 

method. Secondly, we describe the partial meanings of the concept of func- tion: 

operative-tabular, operative-graphic, geometric-algebraic, analytic, ar- bitrary 

correspondence between numerical sets, and mapping between arbi- trary sets. 

We then include the articulation in a global vision or holistic mean- ing and 

highlight the implications for mathematics education of the onto-se- miotic model 

of functional reasoning. 

 

PROBLEM, THEORETICAL FRAMEWORK AND METHOD 

PROBLEM 

The questions on functional reasoning we address in this paper are: 1) How 

has functional reasoning evolved in the different historical stages? 2) What 

meanings have been attributed to the concept of function? 3) How are such 

meanings distinguished according to the level of generality and formal- ization? 

4) What educational implications are derived from our global vision of function 

and functional reasoning? 

To answer these questions, we adopt a theoretical framework that pro- vides 

tools to analyze mathematical activity and the various types of objects and 

processes involved in it. It must assume the plurality of meanings for 

mathematical constructs and provide criteria for identifying different gener- ality 

and formalization levels of mathematical activity. As explained in the following 

section, the OSA offers the assumptions and tools necessary for this type of 

analysis. 

The present study complements other work based on the OSA framework 

that characterize institutional meanings [20-23], and algebraization levels of 

mathematical activity [24,18]. 

 

THEORETICAL FRAMEWORK 

To answer essential educational mathematics questions, such as what 

knowledge is or how learning occurs, the OSA introduces the constructs: 

mathematical practices, mathematical objects and processes, and contextual 

attributes of practices and objects [15]. These theoretical elements are articu- 

lated in the onto-semiotic configuration of practices, objects, and processes 

(Figure 1) through which mathematical activity can be analyzed, distinguish- ing 

different levels for such activity and different meanings for the mathemat- ical 

objects involved. The articulation of mathematical knowledge’s epistemic and 

cognitive facets is achieved in OSA by attributing a double character, 
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personal (idiosyncratic of an individual) or institutional (shared within a com- 

munity) to mathematical practices. 

 

Mathematics as an activity 

People’s activity when solving problems in an ecological context (phys- ical, 

biological, and social) is the central element in constructing of mathe- matical 

knowledge. The problems, which are the origin or motive of mathe- matical 

activity, can be extra-mathematical, thus involving material things, objects, and 

facts, or intra-mathematical, involving non-material or ideal ob- jects. 

 

Figure 1. Onto-semiotic configuration of practices, objects, and processes [15] 

 

Mathematics as a system of objects and processes 

Mathematics cannot be understood simply as an activity of people but 

also as a system of culturally shared objects emerging from this activity. In OSA, 

mathematical practices, that is, the actions performed by people to solve certain 

types of problem situations, are the origin and raison d'être of mathe- matical 

abstractions, ideas, or objects [25]. The constitution of linguistic ob- jects, 

problems, definitions, propositions, procedures, and arguments (Figure 1) 

occurs through the primary mathematical processes of communication, 
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problematization, definition, enunciation, elaboration of procedures (algorith- 

mization, routinization), and argumentation. 

 

Mathematics as a system of signs 

The different objects are not isolated entities but are placed in relation to 

each other. For example, between the symbol 2 and the concept of number 2, and 

between the concept of natural number and the system of operative and discursive 

practices from which this mathematical object emerges, a relation- ship is 

established that OSA calls a semiotic function. The semiotic function is the 

correspondence between an antecedent object (expression/signifier) and a 

consequent object (content/meaning) established by a subject (person or in- 

stitution) according to a criterion or rule of correspondence. We reflect the 

semiotic function in Figure 1 through the expression-content duality, which 

accounts for any use given to meaning: meaning is the content of a semiotic 

function [19]. 

 

Idealization, reification, and generalization according to OSA. Con- 

textual dualities 

The OSA introduces three pairs of contextual attributes to analyze the 

idealization, reification, and generalization processes, from which practices 

and primary objects can be considered: ostensive-non ostensive (material, im- 

material), unitary-systemic, and extensive-intensive (particular-general). These 

contextual dualities make it possible to describe the types of abstraction 

(empirical and formal) at play in mathematical activity and the objects that 

intervene and emerge in these processes. 

In OSA, ostensive is any object that is public and can be shown directly 

to another. Symbols, notations, gestures, graphic representations, and material 

artifacts have this character; they are real or concrete objects. Concepts, prop- 

ositions, procedures, and arguments are constructs, creations of the human mind, 

non-ostensive objects; they depend on subjects, their actions, and arti- facts for 

their existence. This duality allows us to account for the dual pro- cesses of 

idealization and materialization in mathematical activity. 

In some circumstances, mathematical objects participate as unitary enti- ties 

(assumed to be previously known), while others intervene as systems that must 

be unpacked for their analysis. Both onto-semiotic configurations (in their 

double socio-epistemic or cognitive version) and the primary objects that 

compose them can be considered from unitary or systemic perspectives, de- 

pending on the language game [26] in which they participate. In the first case, 
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processes of reification (synthesis) occur, and in the second, a system breaks 

down into its components (analysis). 

A characteristic feature of mathematical activity is the attempt to gener- alize 

the types of problems addressed, the solution procedures, definitions, 

propositions, and justifications. Solutions are organized and justified in pro- 

gressively more general structures. However, in the instructional processes, 

one begins to study models of these general structures. The analysis of math- 

ematical activity requires, therefore, to consider both processes, particulari- 

zation, and generalization, and the objects involved in these processes, which are 

called in OSA extensive (particular) and intensive (general) objects. The 

generalization process consists of finding a pattern from similar cases, while 

particularization consists of generating or showing individual exemplars that 

follow a pattern. 

 

Processes of abstraction and abstract objects in OSA 

In a first approximation, the ostensive-non ostensive duality and the as- 

sociated processes of materialization and idealization explain the concrete 

(ostensive) and abstract (ideal) objects usually considered in everyday lan- guage. 

However, the analysis of mathematical activity, from both a profes- sional and 

an educational point of view, requires a deeper understanding of the nature 

of the abstraction process, the emerging abstract objects, and the inverse 

interpretation process. For this reason, OSA complements the osten- sive-non 

ostensive duality with the unitary-systemic and example-type duali- ties: a 

mathematical abstract object is not only an ideal (non-ostensive) entity but also a 

generality, considered as a unitary whole or as a system, depending on the 

situation. 

In the epistemic analysis of the concept of function, it is necessary to 

identify, in addition to the definitions used, the various elements indicated in 

Figure 1, which are mobilized to respond to the problems in which the object 

function participates in a determinant way. However, it may be implicitly in 

the first stages of its emergence. Each of these configurations is a partial prag- 

matic meaning of the function object that synthesizes the mathematical activ- ity 

to solve specific problems in certain contexts or historical periods. The evolution 

of the concept implies a sequence of configurations through which definitions, 

procedures, properties, and arguments are generalized, passing from the use of 

ordinary, tabular, and graphic language to alphanumeric ex- pression and from 

arithmetic to algebraic and analytical calculus. In this way, 
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we analyze the evolution of the mathematical activity that today we call func- 

tional reasoning, which is undoubtedly a fundamental piece of mathematics 

architecture. 

 

ALGEBRAIZATION LEVELS OF MATHEMATICAL PRACTICES 

Within the OSA framework, we proposed a model to characterize the el- 

ementary algebraic reasoning (EAR) involved in Primary and Secondary 

mathematics, with six levels of algebraization [18]. Such levels consider the types 

of representations used, the degree of generality of the intensive objects involved, 

and the analytical computation done with such objects, which indi- cates the onto-

semiotic complexity at stake. 

Natural numbers are intensive objects (general, abstract entities) that emerge 

from collections of perceptual objects and the actions performed with them [18]. 

Therefore, they are assigned degree 1 of intension or generality, with degree 0 

corresponding to material or ostensive objects. A new layer or generality degree 

2 occurs when considering collections or sets of intensive objects of degree 1, 

and so on. In this way, the universe of mathematical ob- jects is structured in 

increasing degrees of intension. 

In this paper, we interpret and adapt the EAR levels model to analyze 

functional reasoning in different historical stages. In the EAR model, the first two 

levels are considered proto-algebraic since the language used to express 

unknowns or equations must be alphanumeric or operate with the intensive 

objects represented. In the third level, the mathematical activity with the un- 

knowns is represented symbolically. In the case of functional reasoning (FR), we 

distinguish two first levels of proto-functional reasoning (Levels I and II), which 

include problems relating two or more variables to make forecasts or calculations. 

Still, the function object is implicit and represented with natural, numerical, or 

graphical language. In Level III, algebraic language begins to express 

relationships, although the function is restricted to the geometric (study of 

curves) or kinematic magnitudes. 

The fourth and fifth levels in the EAR model describe the more general and 

abstract mathematical activity when parameters are used to indicate fam- ilies of 

functions (Level 4) or when operating with parameters (Level 5). In FR, we 

use these two levels to describe two periods of mathematical activity in which 

functions are treated explicitly and represented analytically (Level IV), or the 

function is defined as an arbitrary correspondence between numer- ical sets 

(Level V). The sixth level in the EAR model studies abstract alge- braic 

structures such as vector spaces, groups, etc. This level VI is appropriate 
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for functional reasoning concerning the set definition of functions, applica- 

tions, or correspondences between arbitrary sets. 

 

METHOD 

This research is a documentary study based on the selection of texts de- 

scribing the emergence of the concept of function in different historical stages 

and epistemological analyses. The selected sources (Table 1) were compiled with 

a systematic search in databases (Web of Science, Scopus, Google Scholar) to 

identify the elements that characterize the partial meanings of function and the 

levels of functional reasoning. 

 
Table 1. Selected documentary sources 

Theme Sources 
 

History 
[27]; [28]; [29]; [30]; [31]; [32]; [33]; [34]; [35]; 

[36]; [37] 

Epistemology 
[1]; [3]; [4]; [5]; [6]; [7]; [10]; [38]; [39]; [40]; [41]; 

[42] 
 

Source: elaborated by the authors 

 

Our analysis of the historical trajectory of function is inscribed in the 

anthropological [43] and ecological [44-46] styles of epistemological reason- ing. 

It is based on OSA ontology and semiotics and thus assumes the "practice turn" 

[47] in philosophy and the history of science. 

PARTIAL MEANINGS OF THE FUNCTION CONCEPT. GENERALITY 

LEVELS OF FUNCTIONAL REASONING 

We distinguish six stages in the historical evolution of functional reason- ing 

by considering the types of problems addressed and the mathematical ac- tivity 

performed. Likewise, we identify six levels of generality of functional reasoning 

when considering the algebraic activity in each stage4. 

 

STAGE I (ANTIQUITY). OPERATIVE-TABULAR MEANING 
 

 

 

 

4 We recognize that the six-stage, six-level model for functional reasoning elaborated 

here can be developed, either by distinguishing sublevels, or additional stages beyond the set 

definition of function. The aims of the epistemological or cognitive analysis addressed may justify 

this enlargement. 
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Solving problems of predicting unknown quantities by tabulating known data 

appears in the earliest historical records of mathematical activity in Bab- ylonia 

and Egypt (2000 BC). Babylonian mathematicians widely used in their 

calculations sexagesimal tables of reciprocals, squares and square roots, cu- bes, 

and cube roots. Babylonian astronomers employed different types of ta- bles to 

calculate ephemeris of the sun, moon, and planets. 

Despite the large gaps in their exponential tables, Babylonian mathe- 

maticians did not hesitate to interpolate by proportional parts to ap- 

proximate intermediate values. Linear interpolation seems to have 

been a commonplace procedure in ancient Mesopotamia, and the po- 

sitional notation lent itself conveniently to the rule of three. A clear 

instance of the practical use of interpolation within exponential tables is 

seen in a problem text that asks how long it will take money to double 

at 20 percent annually. [33] (pp. 27-28) 

The Greeks did not limit themselves to using tables to express relation- ships 

between variable quantities. In ancient Greece, functions introduced in 

connection with mathematical and astronomical problems were subjected to 

studies like those carried out in the mathematical analysis of modern times. 

Depending on the objective pursued, tabulated functions were interpolated (linear 

interpolation) and, in the simplest cases, the limits of quotients of two 

infinitely small quantities were found as, for example, the limit of 𝑠𝑒𝑛 (𝑥) when 
𝑥 

𝑥 → 0. Problems about extreme values and tangents were solved by proce- dures 

equivalent to the differential method; areas, volumes, lengths, and cen- ters of 

gravity were calculated by equivalent methods to the calculation of integrals [7] 

(p. 41). 

There are features in the mathematical work carried out by the Babyloni- ans, 

Egyptians, and Greeks indicating the implicit handling of general rules. They did 

not reduce themselves to a simple tabulation of empirical data but also made 

interpolations and extrapolations suggesting the recognition of in- tensive objects 

with a certain degree of generality. In short, we do not find the function as we 

now use it, but there are characteristic elements of functional reasoning. 

As a synthesis, in this Stage I (Antiquity), problems of calculating quan- 

tities of magnitudes from the relation of dependence with other magnitudes were 

deal with. These applications were mainly extra-mathematical (astron- omy or 

land measurement) and intra-mathematical (tables for calculating squares, cubes, 

square roots). Procedures were elaborated, and properties 
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were identified with a first degree of generality, so we qualify this activity as 

proto-functional of level I. 

 

STAGE II (MIDDLE AGES). OPERATIVE-GRAPHIC MEANING 

In the 14th century, mathematicians of the Oxford (Heytesbury; Swineshead) 

and Paris (Oresme) schools made progress in solving geometrical and kinematic 

problems with diverse procedures, particularly graphical, involving de- pendence 

relations between variables. For Oresme, qualities or forms are phenomena such as 

heat, light, color, density, distance, velocity, etc., which may possess varying degrees 

of intensity and which, in general, change continuously within given limits. These 

mathematicians considered intensities of forms such as, for example, the amount 

of matter, time, etc., concerning their extensions. During such considerations, several 

concepts were introduced, e.g., instantaneous or point velocity, acceleration, and 

variable quantity conceived as a degree or flow of quality. "In all this, a dominant role 

was played by a synthesis of kinematic and mathematical thought” [7] (p. 45). 

Oresme studied the phenomenon of uniformly accelerated motion and 

worked out a solution considered the first graphical representation of physical 

laws. This representation seems to indicate that Oresme "have grasped the 

essential principle that a function of one unknown can be represented as a curve, 

but he was unable to make any effective use of this observation except in the 

case of the linear function” [33] (p. 240). 

By way of summary, in Stage II (up to the 14th and 15th centuries), the study 

of concrete cases of dependencies between two magnitudes continues. Ordinary, 

numerical, and tabular language complements graphical language. Abstract 

concepts (intensive objects) are introduced, such as instantaneous velocity, 

acceleration, and variable quantity, conceived as a degree or flow of quality 

(empirical abstractions). We qualify this activity as proto-functional of level 

II. 

 

STAGE III (MODERN PERIOD). GEOMETRICAL-ALGEBRAIC MEANING 

In the 17th century, further progress in mathematics took place with a 

high impact on the development of functional reasoning, in particular, the 

creation of symbolic algebra together with the extension of the concept of 

number, which by the end of the 16th century encompassed not only the whole 

field of real numbers but also complex numbers [7] (p 50). These advances were 

necessary for introducing the concept of function as a relation between sets of 

numbers instead of "quantities" and for the analytical representation of 
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functions using formulas. In the first half of the 17th century, there were rel- evant 

changes in mathematical activity, such as the invention of analytic ge- ometry 

(Descartes, Fermat), which meant associating an algebraic equation with curves. 

In this way, the analytical aspects of curves were given priority over geometrical 

ones. Likewise, the study of motion (Kepler, Galileo) led to the enunciation of 

physical laws expressed as dependence between variable quantities. 

Despite these advances, the calculus developed by Newton and Leibniz 

was not a calculus of functions. The main objects of study in 17th-century 

calculus were (geometric) curves. 17th-century analysis originated as a col- 

lection of methods for solving problems over curves (such as finding tangents, 

areas, lengths under curves, and velocities of points moving along curves). 

Since the problems that gave rise to calculus were geometric and kinematic, 

it would take time and thought to reformulate calculus in algebraic form [3]. 

The emergence of analytic geometry was a necessary preliminary step for 

the emergence of the construct function as a mathematical object. A procedure 

was available to create an infinity of curves, as Fermat did in the early 17th 

century with the infinite family of parabolas and hyperbolas (y = kxn; k > 0, n 

> 0). However, equations between variables do not assume the use of func- tions 

unless there is explicit identification of the independent and dependent variables 

[5] (p. 127). Considering the types of problems addressed and the use of 

algebraic resources we qualify this mathematical activity as level III functional 

reasoning. Although the construct function has not been formu- lated, there are 

substantial differences concerning the proto-functional levels of the two 

previous stages. 

Summarizing, in Stage III (Modern Period, XVI and XVII centuries), al- 

gebraic expressions began to prevail to express the relationships between ge- 

ometric and kinematic quantities. Although the main focus of the works of 

Descartes, Newton, and Leibniz, among others, is the study of curves, the 

construct function begins its explicit emergence, which is why we assign a level 

III of functional reasoning to this stage. 

 

STAGE IV (18TH CENTURY). ANALYTICAL MEANING 

During the eighteenth century´s first decades, calculus was gradually de- 

tached from its geometrical origin. The algebraic apparatus developed by Newton 

and Leibniz was augmented and exploited by their successors to solve problems 

not directly related to the geometry of curves. The formulas relating 
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1 

1 𝑡 

variables and their differentials began to take on their own life, independent 

of the geometrical objects they represented. 

Leibniz and Johann Bernoulli searched for a concept to express this new 

reality and, finally, came up with the idea of function, a concept that had not been 

necessary in the previous stages. Although Leibniz first used the term function, 

it was J. Bernoulli who formulated an explicit statement of the con- cept in 1718: 

One calls here Function of a variable a quantity composed in any man- 

ner whatever of this variable and of constants. [37] (p. 72). 

It took several decades for calculus to merge in algebraic terms with the 

concept of function as a centerpiece, thanks mainly to Euler and his influential 

textbooks of the mid-18th century. Euler turned the 17th-century calculus of 

variables and equations into a calculus of functions. Euler proposed this def- 

inition in 1748: 

A function of a variable quantity is an analytical expression composed in 

any manner from that variable quantity and numbers or constant 

quantities. [37] (p. 72) 

For Euler, an "analytical expression" was an algebraic formula generated 

from algebraic and transcendental functions (i.e., polynomials, trigonometric, 

inverse trigonometric, exponential, and logarithmic functions) using the four 

algebraic operations plus the composition of functions and the taking of n-th 

roots. 

Once the function object was created and linked to a specific form of 

representation, namely analytical expressions, new problems arose related to 

specific forms of these expressions and the study of the properties of the var- ious 

emerging functions. Power series became a fundamental tool of calculus in the 

18th century to the point that Euler stated that every function can be developed 

into a power series. Another way of producing functions and stud- ying their 

properties took place through their expression in the form of inte- grals, for 

example, the logarithmic function ∫
𝑥 1 

𝑑𝑡. Likewise, from any con- tinuous 

function 𝑓(𝑥), one can define another function 𝐹(𝑥) = ∫
𝑥 

𝑓(𝑡)𝑑𝑡. 

Considering the function as an object allows us to introduce it as an un- 

known in equations or an argument in new functions. In a certain way, one 

operates with functions. In particular, differential equations involving an un- 

known function and one or more of its derivatives determine mathematical 

models of various physical phenomena. The development of methods to solve 

this type of equation constitutes an extensive and rich branch of mathematical 
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analysis. The solution of equations in partial derivatives, such as the cases of the 

wave function and heat, motivated the extension of the concept of func- tion, 

initially given by Euler as an analytical expression, i.e., a unique alge- braic 

formula. As a result of the debate, the concept of function enlarged to include 

expressions given by various formulas and freely drawn curves. Euler himself 

modified his initial definition of function linked to analytical expres- sions in the 

following terms: 

If, however, some quantities depend on others in such a way that if 

the latter are changed the former undergo changes themselves then the 

former quantities are called functions of the latter quantities. This is a 

very comprehensive notion and comprises in itself all the modes through 

which one quantity can be determined by others. If, therefore, x denotes 

a variable quantity then all the quantities which depend on x in any 

manner whatever or are determined by it are called its func- tions. [37] 

(p. 72-73) 

With Euler, the object function, which had previously intervened in math- 

ematical activity in an operative or implicit way assumed as a new entity with 

different types and properties. Functions can be algebraic or transcendent, 

univalued or multivalued, implicit, or explicit, continuous, or discontinuous. The 

developments in power series constitute an essential mode of expression and 

treatment in the study of the formal properties of the new construct. Euler 

enunciated a controversial proposition that would be the starting point of later 

reflections: "We can develop any function as a power series". 

Thus, in the first decades of the 18th century (Stage IV), the algebraic 

apparatus developed by Newton and Leibniz was augmented and exploited by 

their successors to solve problems not directly related to the geometry of curves. 

The concept of function, linked to its analytical expressions with Eu- ler, was 

consolidated as the core construct of the pure or formal mathematical activity that 

characterizes mathematical analysis. Problems of classification of the types of 

functions and their properties (continuity, derivability, etc.) arose. 

The type of mathematical activity performed in this historical stage, in which 

the explicitly defined construct operated to produce new functions, in- tervenes 

centrally, leads us to assign level IV to the functional reasoning of this stage. 

 

STAGE V (19TH CENTURY). ARBITRARY CORRESPONDENCE BETWEEN 

NUMERICAL SETS MEANING 
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Fourier's work on another physical problem, heat conduction, led to em- 

phasize the role of analytical expressions in the conceptualization of the func- 

tion by formulating the following theorem: 

Any function f(x) defined over (-l, l) is representable over this interval by 

a series of sines and cosines, 
𝑓(𝑥) = 

𝑎0 
+ /

∞ 

𝑛𝜋𝑥 𝑛𝜋𝑥
8] 

(1) 

[𝑎𝑛 cos 4 
𝑛=1 𝑙 

8 + 𝑏𝑛 sen 4 
𝑙 

where the coefficients 𝑎𝑛 and 𝑏𝑛 are given by 
𝑎𝑛 = 1 ∫

𝑙  
𝑓(𝑡) cos 4𝑛𝜋𝑡8 𝑑𝑡; 𝑏𝑛 = 1 ∫

𝑙  
𝑓(𝑡) sen 4𝑛𝜋𝑡8 𝑑𝑡 (2) 

𝑙  –𝑙 𝑙 𝑙  –𝑙 𝑙 

 
In the statement of his theorem, Fourier considered that the function f(x) 

represents a succession of values or ordinates, each of which is arbitrary: 

In general, the function 𝑓(𝑥) represents a succession of values or or- 

dinates each of which is arbitrary. An infinity of values being given 

to the abscissa x, there are an equal number of ordinates 𝑓(𝑥). All have 

actual numerical values, either positive, or negative, or null. We do 

not suppose these ordinates to be subject to a common law; they suc- ceed 

each other in any manner whatever, and each of them is given as it were 

a single quantity. [37] (p. 73) 

This generality of the theorem is incorrect, as several later mathemati- cians 

showed. For a correct formulation and proof of Fourier's theorem, it was 

necessary to introduce clear notions of continuity, convergence, and definite 

integral, as well as a clear understanding of the concept of function [5]. This goal 

was achieved by Dirichlet, relying on works by Gauss, Abel, and Cau- chy: 

Theorem 1: If a function f has only a finite number of discontinuities and 

a finite number of maxima and minima at (-l; l), then f can be represented 

by its Fourier series at (-l, l). The Fourier series con- verges pointwise 

to f where f is continuous and to [f(x+) + f(x-)]/2 at every point x where 

f is discontinuous. 

 

Dirichlet is credited with the separation of the concept of function from 

analytical expressions and its consideration as an arbitrary correspondence 

between real numbers: 

Let us suppose that a and b are two definite values and x is a variable 

quantity which is to assume, gradually, all values located between a 

2 
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and b. Now, if to each x there corresponds a unique, finite y in such a way 

that, as x continuously passes through the interval from a to b, y 

= f(x) varies likewise gradually, then y is called a continuous function of 

x for this interval. It is, moreover, not at all necessary, that y de- pends on 

x in this whole interval according to the same law; indeed, it is not 

necessary to think of only relations that can be expressed by 

mathematical operations. Geometrically represented, i.e. x and y im- 

agined as abscissa and ordinate, a continuous function appears as a 

connected curve, for which only one point corresponds to each ab- scissa 

between a and b. [37] (p. 74) 

This attribution is also possibly due to the use and the example of function 

he proposed, the so-called Dirichlet function: D(x), which takes the value c if 

x is rational and the value d if x is irrational. The Dirichlet function, intro- duced 

in connection with the representativeness of a function by the Fourier series, 

reflects a new way of understanding the function object as an arbitrary 

correspondence between numerical sets. It is not a function given by an ana- 

lytical expression, nor can it be represented by a curve. It is a new type of 

function, the first of many "pathological functions". The domain and range in 

Dirichlet's definition of function are sets of real numbers. 

As a synthesis, we note that in the middle of the 18th century, the inter- 

pretation of functions as analytical expressions proved inadequate. During the 

same period a new general definition of function was introduced, which later 

became universally accepted in mathematical analysis: The function as an ar- 

bitrary correspondence between elements of numerical sets (Dirichlet). A new 

generalization of the concept of function took place, which we interpret as 

level V of functional reasoning. 

 

STAGE VI. CORRESPONDENCE BETWEEN ARBITRARY SETS MEANING 

Although Dirichlet's broad conception of a function as an arbitrary corre- 

spondence (between elements of numerical sets) prevailed for much of the 

19th century, signs of dissatisfaction began to appear towards the end of that 

century [4]. In the early 20th century, the intuitionist and formalist schools of 

mathematical philosophy debated questions of the existence of mathematical 

objects. Applied to functions, for example, let f(x) be defined by f(x)=1 if x is 

a positive integer and there are x successive zeros in the decimal expansion of π; 

otherwise, f(x)=0. Does f(x) exist? Is it well-defined? While formalists would 

answer in the affirmative, intuitionists would take the opposite view. For 

them, f(x) is not a bona fide function since we cannot determine its values 
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for all x-values in the domain. For example, what is f(99)? We do not know 

whether f(99)=1 or f(x)=0 because we do not know, and may never know, 

whether there are 99 consecutive zeros in the decimal expansion of π. There- fore, 

for intuitionists, this function is meaningless [4] (p. 205). 

The notion of function as a correspondence between arbitrary sets gradu- ally 

took hold in twentieth-century mathematics. Algebra impacted this de- velopment 

by placing the function in the general framework of application from one set to 

another. As early as 1887, Dedekind gave a very modern def- inition of the term 

"mapping" (application): 

By a mapping of a system S a law is understood, in accordance with 

which to each determinate element s of S there is associated a deter- 

minate object, which is called the image of s and is denoted by φ(s); 

we say, too, that φ(s) corresponds to the element s, that φ(s) is caused or 

generated by the mapping φ out of s, that s is transformed by the mapping 

φ into φ(s). [37] (p. 75) 

The meaning of the function as an arbitrary correspondence can refer both to 

the character of the functional relation and to the values of the variables that 

span the domain and codomain, which can be numbers, tuples of numbers, points, 

curves, functions, permutations, elements of arbitrary sets. 

The functions of analysis, the geometric transformations, the permuta- 

tions of finite sets and the mappings of arbitrary ones flow together, in 

order to generate the general function concept. This concept is used to 

comprise a great variety of things: algebraic operations, functionals, op- 

erators, even sequences, coordinates, logical predicates. [1] (p. 528) 

This extension of the concept of function domain and range to other ar- 

bitrary sets took place gradually in the nineteenth century, although, implic- itly, 

it was previously present in various applications and contexts: maps of the 

earth are functions of the sphere in the Euclidean plane; the derivative, as an 

operator, is a function with domain the set of differentiable functions and range 

the set of all functions; truth tables are functions with domain a set of statements 

and range the set {T, F}. Functions appear as transformations in geometry, as 

homomorphisms in algebra, and as operators in analysis, with domains given by 

Euclidean spaces, groups or rings, and sequences or func- tion spaces, 

respectively. 

The standard definition of function today is firmly based on set theory: 

Let E and F be two sets, which may or may not be distinct. A relation 

between a variable element x of E and a variable element y of F is 
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called a functional relation in y if, for all xE, there exists a unique yF 

which is in the given relation with x. We give the name of func- tion to 

the operation which in this way associates with every element xE the 

element yF which is in the given relation with x; y is said to be the 

value of the function at the element x, and the function is said to be 

determined by the given relation. Two equivalent functional relations 

determine the same function. [37] (p. 77) 

At this stage, the set-based definition of function was introduced, and the 

function became the backbone concept of the architecture of mathematics. 

This level VI of functional reasoning is therefore characterized using abstract 

algebraic structures and functional and topological spaces. 

 

OTHER MEANINGS OF THE FUNCTION CONCEPT 

A pragmatic understanding of a concept meaning, as systems of operative 

and discursive practices involved in the solution of types of problems, it helps 

identify new meanings linked to subtypes of problems. Moreover, bearing in 

mind that functions are pervasive in mathematics, named in various ways [1] (p. 

496), we need to characterize the specific meanings of the constructs re- ferred to 

by terms such as application, transformation, operation, functional, operator, 

morphism, functor, etc. The various educational contexts are sources for 

identifying varieties of meanings of functions. As Freudenthal states, 

In mathematical instruction functions have moved downwards from 

Calculus, via graphs and supported by equations to the primary 

school, even to its lower grades, where they are concretised by imag- 

inary machines and expressed and symbolised in table and arrow lan- 

guage. [1] (p. 528) 

[3] (p. 16), following [48], considers as a development of the concept of 

function the use made in functional analysis of Hilbert spaces L2, the set of square 

integrable-Lebesgue functions. Two functions in L2 are identical if they 

coincide everywhere except possibly on a zero Lebesgue measure set. Thus, in 

function theory, one can always work with representatives of an equivalence class 

rather than individual functions. 

It is interesting to observe that this modern development really in- volves 

a further evolution of the concept of function. For an element in L2 is 

not a function, either in Euler's sense of an analytic expression, 
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or in Dirichlet's sense of a rule or mapping associating one set of num- 

bers with another. It is function-like in the sense that it can be sub- jected 

to certain operations normally applied to functions (adding, multiplying, 

integrating). But since it is regarded as unchanged if its values are altered 

on an arbitrary set of measure zero, it is certainly not just a rule 

assigning values at each point in its domain. [48] (p. 293) 

According to [3], a new meaning of function arose in the context of cat- 

egory theory. This theory emerged in the late 1940s to express formally cer- tain 

aspects of homology theory; in it, the concept of function assumes a fun- 

damental role. The concept is described as an "association" of one "object" A 

with another "object" B. Objects A and B do not need to have elements (i.e., they 

do not need to be usual sets). A category consists of arrows (or "maps"), 

understood as undefined (primitive) concepts that satisfy certain relations or 

axioms [49]. 

 

FUNCTION HOLISTIC MEANING 

The diagram in Figure 2 summarizes the evolution of the concept of func- 

tion and the levels of functional reasoning. We remark that with the appear- ance 

of explicit definitions of function (J. Bernoulli, Euler), the ontological nature of 

the concept and the type of activity it engaged in changed substan- tially. Just as 

in ontogenetic development, as proposed by theories of cogni- tive development 

(Piaget, Dubinski, Sfard), there was a transition from the operational, procedural 

stage to the objectual stage, where the concept be- comes part of cognitive 

schemes that enable the individual to comprehend, make decisions, and act in 

similar situations. 

In phylogenetic terms, the function became part of the body of mathemat- 

ical objects, such as numbers, geometric figures, and equations. Various types of 

functions were invented to model various phenomena, and their specific 

properties were studied (continuity, differentiability, etc.), which allowed the 

definition of new functions and played a role in a new ecological niche char- 

acterized by formalization, generalization, and rigor. 



Onto-semiotic analysis of the emergence and evolution of functional reasoning 

Rev. de Inv. en Mat. y su Ens. (Osorno), 1(1), 09-37, jun. 2024 29 

 

 

 

 

Figure 2. Evolution of the function concept. Levels of functional reasoning 

Source: elaborated by the authors 

 

This historical evolution of the function concept reflects the tendency or 

attitude of mathematicians to generalize concepts and procedures to solve in- 

creasingly complex and general problems. This happened because of the 

“practical necessity for unifying by means of underlying general principles those 

aspects of numerous theories that promise to be more than transitory interest” 

[29] (p. 470). Thus, the formulation of the function in terms of cor- respondence 

between the elements of sets according to arbitrary criteria, not necessarily using 

analytical expressions, responds to the need to account for work with functions 

that could not be drawn or expressed algebraically, such as the Dirichlet 

function. Another qualitative leap is the use of structural al- gebraic language in 

the study of functions, which fundamentally deals with conserving the structures 

resulting from applying morphisms (structure-pre- serving functions). 

As [1] showed, there is a varied phenomenology involving the object 

function, which, together with diverse forms of expression, procedures, prop- 

ositions, and arguments, characterizes functional reasoning. Is it possible to 

identify some common feature that justifies using the same term function to name 

such a variety of meanings? The ideas of dependence, covariation, and prediction 

are the nexus that connects the first three meanings or uses of func- tions (Figure 

2). We can express such dependence tabularly, graphically, or analytically, but 

in any case, variable elements of numerical sets are related to other numbers. 

The ideas of variability and dependence do not appear in 
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the set-based meaning, which is more general and abstract than the previous ones; 

however, the connection or correspondence between objects based on some rule 

or criterion persists. 

In Figure 3, we show an example of the progressive generalization of the 

function, indicating that different species of the intensive object function are 

involved in the progressive sequence of representations and the mathematical 

activity involved in its use. 

 

Level Representation Intensive 

 

I 

  

Of 1st especie 

 

 

 

 

 

 

 

 

 

II 

 

 

 

 

 

 

 

 

 

 

Of 2nd specie 

III 𝑦 = 2𝑥, 𝑥 ∈ (−∞, ∞) Of 2nd specie 

IV 𝑦 = 𝑎𝑥, 𝑎 ∈ 𝐑, 𝑥 ∈ 𝐷 ⊆ (−∞, ∞) Of 3rd specie 

V 
𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝐶, 𝑓(𝑥) ∈ 𝐶′, 

with 𝐶 y 𝐶′ numerical sets 
Of 4th specie 

VI 
(𝑦~𝑓(𝑥), 𝐴, 𝐵), 𝑥 ∈ 𝐴, 𝑓(𝑥) ∈ 𝐵, 

with 𝐴 y 𝐵 arbitrary sets 
Of 5th specie 

Figure 3. Levels of functional reasoning and species of intensives 

Source: elaborated by the authors 

Variable 1 0 1 2 3 4 5 

Variable 2 0 2 4 6 8 10 
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At level I, the tabular representation indicates the use of finite collections of 

particular natural numbers, so the tabular representation of the function is an 

intensive of the 1st species. At level II, the continuous graph indicates the 

presence of intervals of real numbers in which the functional relation can be 

interpolated and extrapolated to any numbers, which is why we interpret it as 

a 2nd species intensive of the function concept. 

At level III, the symbolic representation expresses the same level of gen- 

erality and is therefore also classified as 2nd species intensive. At level IV, 

the presence of the parameter refers to a family of functions, implying the 

increase in the degree of generality and, therefore, in the function specie. At level 

V the increase in the species of the intensive derives from the change in the 

generality of the domain and range of the function, which become any numerical 

sets, and the expression is not necessarily analytic. The 5th specie of the 

intensive of level VI comes from considering a new generality in the type of 

relation and the nature of the correspondence domain and range. 

 

IMPLICATIONS FOR MATHEMATICS EDUCATION 

The analysis of the holistic meaning of function is epistemological and 

has revealed the diversity of senses or partial meanings it has taken on in different 

contexts and historical moments. In terms of the ecology of mean- ings [50, 16], 

we have tried to identify the ecological niche and the role that the function, in 

its different varieties or species, has been playing in mathe- matics, understood 

as a human activity and as a system of historical and cul- tural objects. We aimed 

to identify the reason or motive for the evolution of these species and the common 

characteristics that lead to speaking of the ge- nus function. 

In the OSA framework, this type of study must be previous to posing specific 

mathematics education problems. We cannot decontextualize the global analysis 

of mathematical instruction processes because they are con- substantial to the 

institution and time [51]. It is necessary to describe a global meaning [52] that 

allows addressing issues: 

• Relative to the transformations and adaptations that mathematical 

knowledge needs at the various educational levels. 

• On students' learning, in particular, their difficulties and levels of 

knowledge and understanding. 
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• On designing instructional processes with the maximum didactic suit- 

ability for the different educational contexts. 

In OSA we understand learning as the progressive appropriation of the 

implemented institutional meanings by the students. The implemented mean- ings 

should be based on previous planning, which implies the informed selec- tion of 

specific aspects of the proposed content. This process requires the prior 

reconstruction of a local reference meaning, that is to say, adapted to the con- 

text. The realization of this process of ecological adaptation requires the edu- 

cational agents (curriculum, teachers, authors of didactic materials) to start from 

a global or holistic meaning of the teaching content so that a representa- tive and 

well-founded selection of the planned and implemented knowledge can take 

place, as well as adequate evaluation of learning. 

The holistic meaning model will help to relativize understanding and be 

aware of the complexity of practices, objects, and processes to consider in the 

progressive development of functional reasoning. History informs us when, why, 

and in what form the concept of function arose in mathematics and the reasons 

for its progressive generalization and formalization. In particular, the set-based 

definition and application in abstract algebra, topology, and other fields only 

addresses questions of pure mathematics that have nothing to do with the 

mathematics of change and covariation. 

In conclusion, we note that the definition of function as an expression or 

formula representing a relation between variables is for calculus or a 

pre-calculus course; is a rule of correspondence between reals for 

analysis; and a set theoretic definition with domain and range is re- quired 

in the study of topology. [38] (p. 492) 

Teaching the function concept should consider the different meanings, 

identifying criteria for selecting those suitable for the different educational levels 

and their progressive articulation. The stages or phases in the students' 

construction of the function concept proposed by various cognitive theories, such 

as the APOS model (action, process, object, and scheme) [53] or the operational 

and structural conception [6], should be applied to each of the species of the 

function that make up each meaning. 

 

CLOSING REMARKS 

The analysis of function we have undertaken leads us to conclude that it 

is inadequate to speak of the "function object" in the singular; at least we should 

recognize that such an object has a complex internal structure. Each 
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possible definitions involves an onto-semiotic configuration, interconnected to 

form a conglomerate of practices, objects, and processes configurations. The 

different object-functions indeed share some features or family resem- blances 

that lead to speaking of the concept of function. But when we are interested in 

teaching and learning processes, we cannot start the house from the roof, that is, 

from the most general and abstract object-function. Achiev- ing this higher level 

of functional reasoning will not be possible if the preced- ing ones have not been 

previously worked on. 

We have seen that the mathematical construct function is the fruit of so- cial 

or communal activity. Consequently, the individual or mental learning activity, 

i.e., the ontogenesis of the object function, takes place in the ecolog- ical niche of 

phylogenesis. Hence, before addressing ontogenetic issues, i.e., mental processes 

of understanding and learning, a theoretical framework for understanding 

phylogenesis must be created, as we have advanced in this pa- per. 

Recognizing the diverse meanings of functions is part of the epistemic facet 

of the teacher's didactic-mathematical knowledge required for the suit- able 

teaching of this content [54]. As [52] state: 

The performance as teachers can be seriously impaired if it is not com- 

plemented by a deepening of specific epistemological training on the 

plurality of meanings of mathematical objects and the configurations 

of objects and processes in which such meanings crystallize. [52] (p. 581) 

Moreover, in pre-university education, the function progresses from sim- ple 

tabular representations, often associated with problems of direct propor- tionality 

with natural numbers, to graphical and symbolic representations in algebraic or 

transcendent relations between numerical sets in progressive de- grees of 

generalization (natural numbers, positive fractional, positive decimal, whole, 

rational, real, complex). This evolution is not a mere accumulation of linear 

knowledge but a true epistemological challenge that has defied the great 

mathematicians throughout history. 
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